Solving Absolute Value Equations

AII.4a - The student will solve, algebraically and graphically, absolute value equations and inequalities. Graphing calculators will be used for solving and for confirming the algebraic solution.

Absolute Value

- Definition - The absolute value of a number is the DISTANCE between that number and zero on the number line.
- What do you know about distance? (Think about the odometer in a car...)
- It is always POSITIVE.
- Ex: $|3|=3$

$$
|-5|=5
$$

Absolute Value Equations

- If $|\boldsymbol{x}|=\mathbf{3}$, what do you know about \boldsymbol{x} ?

Remember: Absolute Value is a distance.

- \boldsymbol{x} has a distance of $\mathbf{3}$ from zero.
- If \boldsymbol{x} is $\mathbf{3}$ 'steps' from zero on the number line, what could the value of \boldsymbol{x} be?

- $\boldsymbol{x}=3$ or $x=-3$
- Thus the solution set for $|\boldsymbol{x}|=\mathbf{3}$ $\{x \mid x= \pm 3\}$.

Absolute Value Equations

- If $|\boldsymbol{a}+\mathbf{1}|=\mathbf{8}$, what do you know about $a+1$?
- $a+\mathbf{1}$ is $\mathbf{8}$ steps from zero.
- If $\boldsymbol{a}+\mathbf{1}$ is $\mathbf{8}$ steps from zero, what could

$$
\begin{gathered}
\text { Check: }|a+1|=8 \\
|7+1|=8 \\
|8|=8 \\
|-9+1|=8 \\
8=8 \\
8
\end{gathered}
$$

- Thus $a=7$ or $a=-9$
- Be sure to always check your solutions!
- So if $|a+1|=8$ then $\{a \mid a=7,-9\}$

Absolute Value Equations

- If $|\boldsymbol{g}-\mathbf{3}|=\mathbf{1 0}$, what do you know about $g-3$?
- $\boldsymbol{g}-\mathbf{3}$ is $\mathbf{1 0}$ steps from zero. What could the
va Check: $|g-3|=10$
- $\boldsymbol{g}-\quad|13-3|=10 \quad|-7-3|=10$
- Th
$|10|=10 \quad|-10|=10$
$10=10 \checkmark \quad 10=10$
- $\operatorname{So} \quad \frac{10=}{}$
- Be sure to always check your solutions!
- $\{g \mid g=13,-7\}$

Absolute Value Equations

- If $|\mathbf{5 n}|=\mathbf{- 3}$, what do you know about $\mathbf{5 n}$?
- 5n is $\mathbf{- 3}$ steps from zero. What could the value of $5 n$ be?
- Wait, can you be $\mathbf{- 3}$ steps from zero? Can distance ever be negative? NO!!
- Thus this problem has no solutions!
- We can write the solution as $\boldsymbol{\varnothing}$ or $\}$. It is called the null or empty set.

Absolute Value Equations

- What do you notice is different about absolute value equations when compared to other equations you have solved?

Absolute Value Equations

- What is new or different about the following equations?
- $2|x+6|=18$

$$
|4 s-8|-7=3
$$

- Can you find the needed distance?
- No - there are extra values in the problems. What can we do?
- Use addition/subtraction/multiplication/ division to get the AV expression alone on one side. NOTE - you NEVER change what is between the AV bars!!!

Absolute Value Equations

Divide both sides of

$$
2|x+6|=18
$$

the equation by 2

Distance: x
9 steps frot
Solve

$$
\text { Check: } 2|x+6|=18
$$

$$
\begin{array}{rlrl}
2|3+6|=18 & 2|-15+6| & =18 \\
2|9|=18 & 2|-9| & =18 \\
2(9)=18 & 2(9) & =18 \\
18=18 & 18 & =18
\end{array}
$$

$$
\{x \mid x=3,-15\}
$$

Absolute Value Equations

Add 7 to both sides of

$$
|4 s-8|-7=3
$$

the equation

Distanc
10 step
Solve
Check: $|4 s-8|-7=3$

$$
\left|4\left({ }^{9} / 2\right)-8\right|-7=3 \quad|4(-1 / 2)-8|-7=3
$$

$$
|4(9 / 2)-8|=10 \quad|4(-1 / 2)-8|=10
$$

$$
|18-8|=10
$$

$$
|-2-8|=10
$$

$$
|10|=10
$$

$$
|10|=10
$$

$$
10=10
$$

$$
10=10 \checkmark
$$

Be sure to always check your solutions!

$$
\{s \mid s=9 / 2,-1 / 2\}
$$

Absolute Value Equations

Subtract 6 from both sides of the equation

Distance: $3 d-9$ is
-6 steps from 0 .

$$
|3 d-9|+6=0
$$

$$
|3 d-9|=-6
$$

$$
d=\{ \} \text { or } d=\emptyset
$$

Remember, you can walk 6 steps forward, or you can walk 6 steps backwards, but you cannot walk -6 steps. Distance is always positive and is separate from the direction you are walking.

Absolute Value Equations

What if we kept solving?

$$
|3 d-9|=-6
$$

$$
3 d-9=-6 \text { or } 3 d-9=6
$$

$$
3 d=3 \quad \text { or } \quad 3 d=15
$$

$$
d=1,5
$$

$$
\begin{array}{rlrl}
\text { Check: } & |3 d-9|=-6 \\
|3(1)-9|=-6 & |3(5)-9|=-6 \\
|-6|=-6 & |6|=-6 \\
6 & =-6 X & 6=-6 X
\end{array}
$$

We would still get no solution!

Absolute Value Recap

- The absolute value of a number represents the distance a number/expression is from 0 on the number line.
- You NEVER change the AV expression inside the bars.
- You can only determine the distance when the AV expression is isolated.
- Once the AV is isolated, you can use the distance to write two equations and solve.
- The distance is always the same expression just the positive and negative value of it.

Absolute Value Equations

- If $|\mathbf{2 m}-\mathbf{3}|=\boldsymbol{m}+\mathbf{4}$, what do you know about $2 m-3$?
- $\mathbf{2 m}-\mathbf{3}$ is $\boldsymbol{m}+\mathbf{4}$ steps from zero. What could the value of $2 m+3$ be?
- $2 m-3= \pm(m+4)$
- $2 m-3=m+4$ or $2 m-3=-(m+4)$
\rightarrow if we distribute the negative in the $2^{\text {nd }}$ equation,

$$
2 m-3=-m-4
$$

Absolute Value Equations

Solve $|2 \boldsymbol{m}-3|=\boldsymbol{m}+4$

Check: $|2 m-3|=m+4$

$$
|2(7)-3|=(7)+4 \quad|2(-1 / 3)-3|=(-1 / 3)+4
$$

$$
|14-3|=11
$$

$$
|-2 / 3-3|=11 / 3
$$

$$
|11|=11
$$

$$
|-11 / 3|=11 / 3
$$

$$
11=11
$$

$$
11 / 3=11 / 3
$$

- $\{m \mid m=7,-1 / 3\}$

Absolute Value Equations

Distance: $8+5 a$ is
14-a steps from 0

$$
\begin{gathered}
|8+5 a|=14-a \\
8+5 a= \pm(14-a)
\end{gathered}
$$

Check: $|8+5 a|=14-a$

$$
|8+5(1)|=14-1 \quad|8+5(-5.5)|=14-(-5.5)
$$

$$
|13|=13
$$

$$
|-19.5|=19.5
$$

$$
19.5=19.5
$$

Be sure to always check your solutions!

$$
\{a \mid a=1,-11 / 2\}
$$

Absolute Value Equations

$$
2|x|+4=6 x-8
$$

Solve

$$
x=3, x_{2}(\text { or } 1.5)
$$

Be sure to always check your solutions!

Absolute Value Equations

- Wait, $3 / 2$ did not work!! Since $\frac{3}{2}$ does not solve $2|x|+4=6 x-8$, we must throw it out of the solution set.
- $x=3 / 2$ is called an extraneous solution. We did all the steps correctly when we solved the given equation, but all the solutions we found did not work. This is why you must check all solutions every time.
- Thus, if $2|x|+4=6 x-8$, then $\{x \mid x=3\}$.

Absolute Value Equations

Distance: $3 x-1$ is

$$
|3 x-1|=1+3 x
$$

$1+3 x$ steps from 0

$$
3 x-1=1+3 x \text { or } 3 x-1=-1-3 x
$$

Solve

$$
\begin{array}{ccr}
0=2 & \text { or } & 6 x=0 \\
\varnothing & \text { or } & x=0
\end{array}
$$

Be sure to always check your solutions!

$$
\begin{gathered}
\text { Check: } \begin{aligned}
&|3 x-1|=1+3 x \\
&|3(0)-1|=1+3(0) \\
&|-1|=1 \\
& 1=1
\end{aligned} \\
\{\boldsymbol{x} \mid \boldsymbol{x}=\mathbf{0}\}
\end{gathered}
$$

How far ... and from where?

In carpentry, a stud is a vertical beam used to create support in a wall. Typically studs are positioned 2 feet apart. If there is a stud 8 feet from the intersecting wall, what are the positions of the studs on either side
 of the pictured stud (with respect to the intersecting wall)?

6 ft . and 10 ft .

How far ... and from where?

- How can create an equation that would give us this answer?
- We are looking for a value based on how far apart two things are - the DISTANCE between them...
- ABSOLUTE VALUE!!!!

How far ... and from where?

$$
\text { | = } 2
$$

- Absolute value tells you the distance... what is the distance in this problem?
- 2

How far ... and from where?

- What does the distance represent?
- The 'difference' of the distances between the studs.

How far ... and from where?

$$
|x-8|=2
$$

- What do we know about the studs?
- One is at 8 feet from the intersecting wall. We don't know the other.

How far ... and from where?

$$
|x-8|=2
$$

Solve

$$
\begin{gathered}
x-8= \pm 2 \\
x-8=2 \text { or } x-8=-2 \\
x=10 \quad \text { or } x=6 \\
x=6,10
\end{gathered}
$$

How far ... and from where?

$$
|x-8|=2
$$

We can generalize this to be:

$$
\begin{gathered}
\mid \text { unknown }- \text { given value } \mid=\text { distance } \\
\qquad|x-8|=2
\end{gathered}
$$

Our solutions for x are the values 2 feet from 8 .

How far ... and from where?

$$
\mid \text { unknown - given value } \mid=\text { distance }
$$

- What if we focused on a stud 5 feet from the intersecting wall? What would be the positions of the studs beside it?
- 3 feet and 7 feet
- Create an absolute value equation that would allow us to solve for these values.
- $|x-\underline{5}|=\underline{2}$
- The solutions for x are the values 2 feet from 5 .

How far ... and from where?

- Looking at our previous problems again...
- The solution set for $|\boldsymbol{g} \mathbf{- 3}|=\mathbf{1 0}$ is

$$
\{g \mid g=13,-7\}
$$

- Fill in the blanks ...

The values of g are 10 steps from 3 .

- Let's prove this with the graph.

How far ... and from where?

- The solution set for $|\boldsymbol{a}+\mathbf{1}|=\mathbf{8}$ is

$$
\{a \mid a=7,-9\} .
$$

- The values of a are $\quad 8$ steps from $\quad-1$.

- The solution set for $|\boldsymbol{x}+\mathbf{6}|=\mathbf{9}$
$($ from $2|x+6|=18)$ is $\{x \mid x=3,-15\}$.
- The values of x are $\quad 9 \quad$ steps from $\quad-6$.

How far ... and from where?

- And there is always the trouble maker...
- The solution set for $|\mathbf{4 s}-\mathbf{8}|=\mathbf{1 0}$ was

$$
\{s \mid \mathrm{s}=9 / 2,-1 / 2\}
$$

- The values of s are $\underline{10}$ steps from $\underline{8}$ right?

- NO!!! The two solutions are the same distance from what value?
- 2

How far ... and from where?

- The solution set for $|\mathbf{4 s}-\mathbf{8}|=\mathbf{1 0}$ was

$$
\{s \mid \mathrm{s}=9 / 2,-1 / 2\}
$$

- How far are the solutions from 2 ?
- 2.5 steps
\mid unknown - given value $\mid=$ distance How far ... and from where?
- The solution set for $|4 s-8|=10$ was $\{\boldsymbol{s} \mid \mathbf{s}=\mathbf{9} / \mathbf{2},-1 / \mathbf{2}\}$ 。
- The values of s are 2.5 steps from 2.
- Why is this equation different?
- In the other equations, there was not a coefficient with the unknown variable.
- We need to keep the coefficient with the unknown value.
\mid unknown - given value $\mid=$ distance
How far ... and from where?
- The solution set for $|\mathbf{4 s}-\mathbf{8}|=\mathbf{1 0}$ was $\{s \mid s=-1 / 2,9 / 2\}$.
- The values of $4 s$ are 10 steps from \qquad
- The values that are 10 steps from 8 are -2 and 18.
- So $4 s=-2$ and $4 s=18$.
- Thus $s=-1 / 2$ and $s=18 / 4=9 / 2$
\mid unknown - given value $\mid=$ distance

How far ... and from where?

- What if our equation was $|-3 f-6|=21$?
- The values of $-3 f$ are 21 steps from 6 .
- The values that are 21 steps from 6 are 27 and -15 .
- So $-3 f=27$ and $-3 f=-15$.
- Thus $f=-9$ and $f=5$
- So the solution to $|-3 f-6|=21$ is $\{f \mid f=-9,5\}$

How far ... and from where?

- Going back to our very first example $|x|=3$, the solutions are 3 steps from 0 .
- How does this fit into our generalized equation? |unknown - given value| = distance
- The given value is 0 but we don't need to write the equation as $|x-0|=3$.

Use the generalized form of an

Examples

 absolute value equation to solve each problem.- $|3 m-15|=12$
- The values of $3 m$ are $\underline{12}$ steps from $\underline{15}$.

$$
\begin{gathered}
15 \pm 12=? \\
3 m=27 \text { and } 3 m=3 \\
m=9 \text { and } m=1
\end{gathered}
$$

- Thus the solution set for $|3 m-15|=12$ is $\{m \mid m=1,9\}$.

Use the generalized form of an

Examples

 absolute value equation to solve each problem.- Solve: $2|5 h+10|-7=1$
- Can we tell the distance here?
- No, we must isolate the absolute value.
- $|5 h+10|=4$
- The values of $5 h$ are $\underline{4}$ steps from $\underline{-10}$.
- $-10 \pm 4=-6,-14$
- $5 h=-6$ and $5 h=-14$
- $\{h \mid h=-1.2,-2.8\}$

Examples

You can still solve using straight Algebra.

- $2|5 h+10|-7=1$
- $|5 h+10|=4$
- The distance is 4 , so $5 h+10= \pm 4$

$$
\begin{array}{rcc}
5 h+10=4 & \text { or } & 5 h+10=-4 \\
5 h=-6 & \text { or } & 5 h=-14 \\
h=-6 / 5 & \text { or } & h=-14 / 5 \\
h=-1.2 & \text { or } & h=-2.8
\end{array}
$$

- $\{h \mid h=-1.2,-2.8\}$

One more method... graphing!

- Solve $|2 x-3|=5$
- $\{x \mid x=4,-1\}$
- Let's explore how the graphing calculator can help us determine this solution.

Solve by Graphing

- Graph $y=|2 x-3|$ and $y=5$ using your graphing calculator. (See the next slides for directions.)

- My window: x-min: $-4, x$-max: 6;y-min: $-3, y$-max 7; all scales $=1$

Graphing

- Casio Directions

- Main Menu - Select Graph (5)
- Delete any equations already in the graph menu (DEL (F2), Yes (F1))
- To find the absolute value function: hit the OPTN button. Choose NUM (F5) then Abs (F1).
- To graph the functions hit DRAW (F6) or EXE.

Graphing

- TI Directions
- Hit the $y=$ button

- Delete any equations already in the $y=$ menu by putting the cursor on it and hitting CLEAR.
- To find the absolute value function: hit the MATH button. Use your arrow buttons to highlight NUM then select \#1: abs(.
- Hit the GRAPH button to graph the functions.

Graphing

- Based on our graph, what could be the solutions to: $|2 x-3|=5$?
- We want to know where the two graphs are equal, so we are looking for their intersection.
- $x=-1,4$

Graphing

- Verify that $\{\boldsymbol{g} \mid \boldsymbol{g}=\mathbf{1 3},-\mathbf{7}\}$ are solutions to $|g-3|=10$ by using the graph.
- What are the two equations you need to graph?
- $\boldsymbol{y}=|\boldsymbol{g}-\mathbf{3}|$ and $\boldsymbol{y}=10$

